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Abstract. In this report, we would demonstrate five different methods of
calculating posterior model probability. Three of them are based on prior
samples; one of them is based on posterior samples; and the remaining one is
calculated through direct calculation via Python package.
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1. Setup

Let pj denote the toxicity probability of dose level j, j = 1, . . . , J , and the
toxicity probability is assumed to increase monotonically with the dose level, i.e.
0 < p1 < · · · < pJ < 1. In a clinical trial with five dose levels, i.e. J = 5, the
number of observed toxicity yj and the number of treated patients nj are

Dose Level j 1 2 3 4 5
yj 0 1 4 3 0
nj 3 6 12 6 0
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We consider three models (model M1 is the true model as it satisfies the mono-
tonic constraint):

M1 : p1 < p2 < p3 < p4 < p5

M2 : p1 > p2 > p3 > p4 > p5

M3 : p1 < p2 < p3 > p4 > p5

The aim is to find the posterior model probability Pr(Mk|D), where D is the ob-
served data. Assume each levels of trials are independent. Then the likelihood
function is

(1) L(D|p1, . . . , pJ) =
J∏

j=1

(
nj

yj

)
p
yj

j (1− pj)
nj−yj .

Then given the observed data D, the marginal likelihood under model Mk (k =
1, 2, 3) is

(2)
Pr(D|Mk) =

∫
f(p1, . . . , pJ |Mk)L(D|p1, . . . , pJ)dp1 · · · dpJ

=
∫
f(p1, . . . , pJ |Mk)

∏J
j=1

(
nj

yj

)
p
yj

j (1− pj)
nj−yjdp1 · · · dpJ

where f(p1, . . . , pJ |Mk) is the joint prior distribution of p1, . . . , pJ under Mk. The
posterior probability of Mk is then given by

(3) Pr(Mk|D) =
Pr(D|Mk) Pr(Mk)∑K
k=1 Pr(D|Mk) Pr(Mk)

,

where Pr(Mk) is the prior probability of Mk.
Now we specify a discrete uniform distribution for the prior model probabil-

ity; that is Pr(Mk) = 1/3, k = 1, . . . , 3. We assign the joint prior distribution
f(p1, . . . , p5|Mk) to be multivariate uniform but with restriction on the domain
such that (p1, . . . , p5) must satisfy the order constraint under each model Mk.

The keys for calculations of (3) are on (2).

2. Methods Based on Prior Samples

The idea of this section is that, once the prior samples are generated, then we
could obtain (2) by Monte Carlo estimation

Pr(D|Mk) ≈
1

I

I∑
i=1

J∏
j=1

(
nj

yj

)
(p

(i)
j )yj (1− p

(i)
j )nj−yj .

There are three possible approaches to generate joint uniform prior of (p1, . . . , p5)
under the model constraint.

• Sequential: generate p1, . . . , p5 from the joint uniform prior in a sequential
order, e.g. under M3, simulate p1, . . . , p5 as p1 ∼ Uni(0, 1), p2 ∼ Uni(p1, 1),
p3 ∼ Uni(p2, 1), p4 ∼ Uni(0, p3) and p5 ∼ Uni(0, p4).

• Reorder: Generate p1, . . . , p5 from the joint uniform prior by first simulating
five uniform (0, 1) variates, and then reordering them according to each
model constraint. Note that model M3 does not fully specify the order so
that we seperate the p1 < p2 < p3 > p4 > p5 into six equal-probability
order-specified subcases:
(i) p3 > p2 > p1 > p4 > p5,
(ii) p3 > p2 > p4 > p1 > p5,
(iii) p3 > p2 > p4 > p5 > p1,
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(iv) p3 > p4 > p2 > p1 > p5,
(v) p3 > p4 > p2 > p5 > p1,
(vi) p3 > p4 > p5 > p2 > p1,
to overcome.

• Gibbs: the full conditional distribution of joint (truncated 1 ) uniform dis-
tribution can be calculated as

f(pi|p1, . . . , pi−1, pi+1, . . . , p5) =
f(p1, . . . , p5)

f(p1, . . . , pi−1, pi+1, . . . , p5)
.

In particular, for each model, when k = 1,

f(pi|p1, . . . , pi−1, pi+1, . . . , p5) =
1

pi+1 − pi−1
, i = 1, . . . , 5

where we set p0 = 0, p6 = 1. For k = 2,

f(pi|p1, . . . , pi−1, pi+1, . . . , p5) =
1

pi−1 − pi+1
, i = 1, . . . , 5

where we set p0 = 1, p6 = 0. For k = 3,

f(pi|p1, . . . , pi−1, pi+1, . . . , p5) =


1

pi+1−pi−1
, i = 1, 2

1
1−max{p2,p4} , i = 3

1
pi−1−pi+1

, i = 4, 5

,

where we set p0 = 0, p6 = 0.
An alternative but easier method is that because of

f(pi|p1, . . . , pi−1, pi+1, . . . , p5) ∝ f(p1, . . . , p5) = constant

pi|p1, . . . , pi−1, pi+1, . . . , p5 would follows a corresponding uniform distribu-
tion.

Therefore, we may generate the Gibbs samples easily by Python function
scipy.stats.uniform().

2.1. Theoretical Comments.

2.1.1. On Sequential Method. In fact, the sequential method would not produce a
joint uniform distribution. Take M1 as an exmaple,

f(p1, . . . , p5) =f(p5|p1, . . . , p4)f(p4|p1, p2, p3)f(p3|p1, p2)f(p2|p1)f(p1)

=
1

(1− p4)(1− p3)(1− p2)(1− p1)
.

Although the support of density is indeed p1 < · · · < p5, the value is not 1. There-
fore we conclude that the sequential method is incorrect theoretically.

1In the following, the “truncated” distribution means a distribution following a known distri-
bution but with domain truncated by the corresponding model.
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Methods − log Pr(D|M1) − log Pr(D|M2) − log Pr(D|M3) Pr(M1|D) Pr(M2|D) Pr(M3|D)

Sequential 8.30 10.37 8.65 0.55 0.07 0.38
Reorder 5.24 10.16 8.02 0.93 0.01 0.06
Gibbs 5.13 11.11 9.05 0.98 0.00 0.01

Table 1. Summerized results of estimations based on prior sam-
ples. As the values of Pr(D|Mk)s are very small, we present the
− log-value here. Results are rounded to two decimal places.

2.1.2. On Reorder Method. The technique of reordering is actually producing order
statistics. Take M1 as an example, we actually have p1 = X(1), . . . , p5 = X(5) where
X1, . . . , X5 ∼ Uni(0, 1) independently and X(i) is the i-th order statistics. Then by
formula of the joint distribution of the order statistics of an absolutely continuous
distribution, or directly stated in Wikipedia, we have

f(p1, . . . , p5) = 5! = 120, 0 < p1 < · · · < p5 < 1,

which is indeed the truncated uniform distribution.

2.1.3. On Gibbs Sampler. The Gibbs sampler would converge to the desired trun-
cated uniform distribution by ergodic theorem, as illustrated in Lecture 3.

2.2. Implementation in Python. For codes, see generatePriorSample() in
“modelposterior.py”. Note that the samples of truncated unifrom distribution can
be generated through a rejection process. The generated prior samples are visual-
ized in Figure 1. These figues are plotted by pltAllThree() in “modelposterior.py”.

2.3. Results. Presented in Table 1.

3. Method Based on Posterior Samples

Again, we aim to find Pr(D|Mk) for k = 1, 2, 3. We shall use Chib’s method [1]
to utlize posterior samples for the calculations of Pr(D|Mk). The idea is as follows.
By Bayes’ rule,

(4) Pr(D|Mk) =
L(D|p∗,Mk)f(p

∗|Mk)

f(p∗|D,Mk)
,

where p∗ = (p∗1, . . . , p
∗
5) is an arbitrary parameter of the corresponding model Mk.

As the likelihood function and prior distribution are both known, it remains to
find the posterior f(p∗|D,Mk). Typically, p∗ would be chosen as a point of high
posterior probability to increase the numerical accuracy of the estimate. It is clear
that

f(p∗|D,Mk) =

n∏
j=1

f(p∗j |p∗j−1, . . . , p
∗
1, D,Mk).

And each factor can be estimated from the Gibbs output of posterior by integrating
out parameters p

(i)
j+1, . . . , p

(i)
n ,

(5) f(p∗j |p∗j−1, . . . , p
∗
1, D,Mk) =

1

I

I∑
i=1

f(p∗j |p
(i)
5 , . . . , p

(i)
j+1, p

∗
j−1, . . . , p

∗
1, D,Mk).

Therefore, it remains to generate the Gibbs samples of posterior and find the for-
mula of full conditional distribution.

https://en.wikipedia.org/wiki/Order_statistic#The_joint_distribution_of_the_order_statistics_of_the_uniform_distribution
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Figure 1. Margianl density plot of prior distribution
f(p1, . . . , p5|Mk) generated by three different methods of
model Mk, k = 1, 2, 3. Note that the prior samples generated
by Sequential methods are totally different from the other two
methods. See subsection 2.1 for theoretical illustrations.

3.1. Full Conditional Distribution of Posterior. It is clear that the posterior
is proportional to the product of likelihood (1) and prior (constant), so

(6) f(p1, . . . , p5|D,Mk) ∝
5∏

j=1

p
yj

j (1− pj)
nj−yj .
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Figure 2. Margianl density plot of posterior distributions
f(p1, . . . , p5|D,Mk) generated by Gibbs sampler for each k =
1, 2, 3.

From the expression, we could deduce that p1, . . . , p5|D,Mk follows a truncated
Dirichlet distribution. Then take k = 1 as an example,

f(pj |p1, . . . , pj−1,pj+1, . . . , p5, D,Mk)

=
f(p1, . . . , p5|D,Mk)

f(p1, . . . , pj−1, pj+1, . . . , p5, D,Mk)

=
p
yj

j (1− pj)
nj−yj∫ pj+1

pj−1
p
yj

j (1− pj)nj−yj
,

which can be viewed as a truncated Beta distribution.
An alternative but easier way to see this fact is from the observation

f(pj |p1, . . . , pj−1, pj+1, . . . , p5, D,Mk) ∝ p
yj

j (1− pj)
nj−yj ,

so that it must follows a truncated Beta distribution.
Here the intepretation of p0, p6 is the same as Gibbs prior sampler in section 2

for each model k.

3.2. Implementation in Python. The samples of truncated Beta distribution
can be generated through a rejection process. For codes, see generatePosteriorSample()
in “modelposterior.py”. Also, generated samples are plotted through pltPosterior(),
see Figure 2. Then we use the Gibbs samples to find

f(p∗j |p∗j−1, . . . , p
∗
1, D,Mk)

through (5), taking p∗ as the point with maximum density. The procedure of finding
the point with maximum density is contained in the plotting process pltPosterior().
Finally we obtain f(p∗|D,Mk) by products (6). It remains using (4) to obtain
Pr(D|Mk).

3.3. Results. Presented in Table 2.

4. Direct Calculation Based on Python Package Sympy

The direct calculations of Pr(D|Mk) through (2) by hands are quite involved
multipule integral exercise. Thanks to Python package Sympy, they can be solved
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− log Pr(D|M1) − log Pr(D|M2) − log Pr(D|M3) Pr(M1|D) Pr(M2|D) Pr(M3|D)

5.25 9.95 7.97 0.93 0.01 0.06
Table 2. Summerized results of estimations based on posterior
samples. As the values of Pr(D|Mk)s are very small, we present
the − log-value here. Results are rounded to two decimal places.

− log Pr(D|M1) − log Pr(D|M2) − log Pr(D|M3) Pr(M1|D) Pr(M2|D) Pr(M3|D)

5.25 10.15 8.00 0.93 0.01 0.06
Table 3. Summerized results of direct calculation based on
Python package Sympy. As the values of Pr(D|Mk)s are very small,
we present the − log-value here. Results are rounded to two deci-
mal places.

by programing. Take k = 1 as an example, the integrand is

5! ·
5∏

j=1

(
nj

yj

)
p
yj

j (1− pj)
nj−yj10<p1<···<p5<1,

where 1A is the indicator function for some set A. Since the package is not able to
solve for integrands containing indicator functions, it is better to write the integral
as ∫

5! ·
5∏

j=1

(
nj

yj

)
p
yj

j (1− pj)
nj−yj10<p1<···<p5<1dp1 · · · dp5

=

∫ 1

0

dp5

∫ p5

0

dp4 · · ·
∫ p2

0

dp1

5∏
j=1

(
nj

yj

)
p
yj

j (1− pj)
nj−yj .

4.1. Results. Presented in Table 3.

5. Camparisons and Conclusions

The final results are presented in Table 4. In terms of values Pr(Mk|D), we
conclude that

• for methods based on prior samples, sequential is incorrect, both practically
and theoretically.

• reorder is correct, both practically and theoretically.
• Gibbs is correct theoretically, but incorrect in practise. This may due to

the reason that sample size is still not big enough, as the ergodic theorem
only gives a qualitative conclusion.

• the method based on posterior samples is correct, both practically and
theoretically.

See section 2.1 for the theoretical comments on the methods based on prior
samples; [1] for the theoretical justifical on the methods based on posterior samples.
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P(D|M1) using
prior samples generated by:

- Sequential: 0.0002495301469676799 Take Log: -8.295930820542221
- Reorder: 0.005284676195702929 Take Log: -5.242943930088884
- Gibbs: 0.005900350497520215 Take Log: -5.132743523475593

posterior samples generated by Gibbs: 0.005266292920716173 Take Log:
-5.246428594556399
Real value calculated by Sympy.integrate(): 0.00526204857061652 Take Log:
-5.2472348659587995

P(D|M2) using
prior samples generated by:

- Sequential: 3.13264162115432e-05 Take Log: -10.371048847939349
- Reorder: 3.883222660131004e-05 Take Log: -10.156260073569829
- Gibbs: 1.4957567875769999e-05 Take Log: -11.110293173783779

posterior samples generated by Gibbs: 4.787782275247257e-05 Take Log:
-9.946858151314434
Real value calculated by Sympy.integrate(): 3.92595954034856e-5 Take Log:
-10.14531467473489

P(D|M3) using
prior samples generated by:

- Sequential: 0.0001746873227341847 Take Log: -8.652512909374957
- Reorder: 0.00033011143232042264 Take Log: -8.01608028680443
- Gibbs: 0.00011790271590876442 Take Log: -9.045650714988518

posterior samples generated by Gibbs: 0.0003469696029222537 Take Log:
-7.966273381502172
Real value calculated by Sympy.integrate(): 0.000335330507221715 Take Log:
-8.00039392377646

Model Posterior Probability for
prior samples generated by:

- Sequential: P(M1|D)=0.5477631347578045, P(M2|D)=0.06876706543592573,
P(M3|D)=0.3834697998062698
- Reorder: P(M1|D)=0.9347420469701484, P(M2|D)=0.006868559896107142,
P(M3|D)=0.05838939313374447
- Gibbs: P(M1|D)=0.9779785111774594, P(M2|D)=0.0024792052553707163,
P(M3|D)=0.019542283567169957

posterior samples generated by Gibbs: P(M1|D)=0.930253022975053,
P(M2|D)=0.008457275358487752,P(M3|D)=0.061289701666459195
Real value calculated by Sympy.integrate(): P(M1|D)=0.933543708521986,
P(M2|D)=0.00696507221402340, P(M3|D)=0.0594912192639910

Figure 3. An example output of modelposterior.py in Terminal.

Methods − log Pr(D|M1) − log Pr(D|M2) − log Pr(D|M3) Pr(M1|D) Pr(M2|D) Pr(M3|D)

Prior (Sequential) 8.30 10.37 8.65 0.55 0.07 0.38
Prior (Reorder) 5.24 10.16 8.02 0.93 0.01 0.06
Prior (Gibbs) 5.13 11.11 9.05 0.98 0.00 0.01
Posterior 5.25 9.95 7.97 0.93 0.01 0.06
True 5.25 10.15 8.00 0.93 0.01 0.06

Table 4. Summerized results of ALL methods, combining Table
1, 2 and 3.
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