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1 Results in [1]

1250 Strong Exponential Stability (SES) PAM one-step weak error ki1 a] DATS 2 BB A% =
1) UiT weak convergence MHISGHE [1], XMNFMFRR LR, AR BER CRgEH
HERHE 2 PR L)

Notation
e t, =no.
o X, denotes the real solution and Y;, denotes the numerical solution of an SDE.

* %gf(x) = Ex[f(y;i)] and P f(x) = E*[f(X})].

1.1 A General UiT Weak Convergence Theorem
Assumption 1.1. (i) SES. There exists Ko, A > 0 such that

1Pfllez < Kollfllz - ™ 1)

(Unsolved) Question 1. NAF2 Pof(x) #E. b EALE? MRAELSRA AT B
P, : CE(R"™) — CE(R™)?

(ii) Local consistency & a-priori (uniform) control. There exists ¢, ® : RY x RT — [0,00) and
K1 > 0 such that

[E*f(Ys) = F(Xo)]| < K[| fllcz - ¢(, 0) (2)



for all z € RN, f € CZ(RY) and 6 > 0. Also
sup E*[¢(Y), 6)] = sup(4,¢)(z,8) < ®(z,9) (3)

neN neN
for all z € RY and § > 0.

Remark 1.2. X HEEEFEHRL, || ||02 HAF—1TEIEH norm, ME— AR seminorm. B HJ
HAKE A for f e C*HRY),

def
1 llez =

= sup ([V£(2)] + [ V2 (@)])
where ||A] &', /32 |a;;|* denotes the Frobenius norm of a matrix. M, SES {43 Bk
D, 4% B 5ok Kqﬁ@@” 0, 1M PAFEECHE AU S 3 — A4
[fllcz = 0 iff Vf(x) = 0 (zero vector) and V2f(x) =0 for all z € RY. pyH{H & H
AP, f AR .
FATX B SES SR P USRI BRI . 5 SES RIS 2 D,
Theorem 1.1(ii)] MZ5EHR 1 -
1Pf = (Pl < Co e fll (4)

where ¢ > 1 and o, C' > 0 independent of zg and ¢. iIXH u(f) IE2— " {EEREBLE, HsoH
JER AR .
(Unsolved) Question 2. Norm ||-||;, 5 seminorm ||||cg Z e AR E R R R

W2 KT SES XM PASF (2, Section 4.

(IPAMEN SCF I A SR, AT, WIkd.) DA SAIRIERIEE R OFIEXTJERIERT) . A HE
SEH,

|Pif(z) = Pf(y)l <[IVES - |z =yl
Hi SES Z&F(1), #tA
[Puf(2) = Pof(y)l < Kol fllgz e |z =yl ()
AR 2,y R E XY, IBAH

[E[PS(X) ~ Pif (V)] < B|PS(X) ~ Pf(Y)]
< Ko lfllz - e MEIX ~ Y],

LR E 2 X, Y BREINE CRUMERBAU T IZEM R REAZ B ) o IR X =2 as, Y RAALIEE o
(BEBAPLEAVEEE) REREA T, TR ARA

IPuf@) = () < Kolflleg -« [l = ol n(dy),

R [ lylu(dy) < oo, HINELA S, EAMITCERE] (£, W

HIH1E %, under Assumption 1.1, FA17 PATS-3| UiT weak convergence [ HISGH %K,

YR, BERXAEERE R D, (H4)] T p KT 2, RMEA— BN p = 2 AFFE, HBEAHR



https://en.wikipedia.org/wiki/Seminorm

Theorem 1.3. With the notation we introduced so far, under Assumption 1.1, the following bound
bolds for any f € CERY) and § > 0 small enough:

K||fllz - ®(x,0)
neN — €

) (6)

with K ¥ K (Ko v 1).

PATF &2 observations, FJPAEEH Assumption 1.1 P &4H7EM « BX Ytik denotes the Markov chain (indexed
by n) that evolves according to the time discretisation until time ¢; and then evolves according to SDE. #f
/AJ)‘QH = Y20V ==Y TRk, AT AT TS AR (telescopic) sum [
e
B () — B f(X0,) = D [B7 A7) — B pr R )]
k=1

A [, 1% observation ] DA E B4 H DAIEBA 4 L0t %] (not UiT) f# general weak convergence theorem,
Z: i, [4, Theorem 2.6]. A BRI H153% observation REEH HIFIEMIH EFEFRATI RS T,
YOS B A TR, Wige YVOr 5 YOR T ii2ssE, () RIVENIAE k- 1 WHTERR—RR, (i) 7E
2], YR Rt 1 Y, T i SDE @ik EAIMEAIEERR Y. (i) 76 . BEIZ R,
B SDE 3k, HEWRaEAR. T (i), FIFE one-step weak error [{fiiit(2), H-ERk—
-G L (3). X (i), f1(5) AUAILR R AT (FEE(5) 2 SES MHER).

IXFE, M intuition (1) A EW AFRMEFEATFRZ Assumption 1.1 f{JEH . ¥ [4, Theorem 2.6] W, VEF HIEMR
wr

BT (V") — BT f(V )

R S, ANTTAEI T AN s (EAERMIAOMRER T, Yo SRR R T E AT, TR A 35 R

Remark 1.4. Assumption 1.1 [{E—2XF T UiT weak convergence [l & &l &M DB, [3] 4
BT EAIARREAME S, A DH PR XSG, SN melT1.

Proof of Theorem 1.3. ¥
B F(Y)) ~ B f(X,,) = () P, f (@)
AN
Colw) & A1 () = P f(2) = Mf(2) = M (Pr )@) + AP, @) = P f(). (7)

g

An () B (z)

2 An(z) FRM o TR B BUEMRGEA S S 1 BEUEUG SDE #ifkryZs, HM4F n— 125/
weak error; B, (x) FnE 1 A 5EMH)5 SDE bk 5H SDE k2=, nlfl—2# weak error
lid & SES Z&{Fdtf Attt . BARM

|Bu(@)| = [E” [P, f(YR) = Pioy f(X5)]|

2)
< K[| P £l 0(,0)

()
< KiKo [ fllge - oz, §)e M=o,

PHEESC (1] A, SelE R R SRR .
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|An(@)] = [B [ A (V) = P f(Y2) | Y5 = 2]
= |E[G.a (YR) | Yy = 4]

WEEABAAE . BITHE no=2 RS (), F5IAS3)
n—1

‘///rff(x) - Ptnf(ff)| <K Hf”og Z//llféb(% §)eAn—1-k)5,

k=0

where K = K;(Ko V1) for all z € RN, FAH TR ANE5E . a9 n — oo, i (3)5
LBV R AR, SR THRAEER. O
Remark 1.5. £ Theorem 1.3 BuERIH, AT & BLIX B %A H 2 H”og HE X, MR, X1~
EHNTTAEER seminorm YT, HELHS R seminorm 5 Assumption 1.1 HH %N B AT,
JR R seminorm F5EAHAG R L S50 (1); BBk L (2) A1 (3). FE%riE global
Lipschitz £y Euler 43, 2 0F(2) RIFHXT (1o AAZHAUE. WERAN, IBATKATAEXT
R SES ZAF (1) st HEEEHT (]| oo, XA ARMERIER . [1] T i R EGE D A0
USLELAT bla) = —a — o SR B FER, AT ba) = ¢ — o® SRR T .

1.2 UiT Weak Convergence for Explicit Euler Scheme with Global
Lipschitz Coefficient: Application of Theorem 1.3

Lemma 1.6. Assume that condition (2) is satisfied, and that the function ¢(x,0) defined can be
written in the form ¢(z,0) = §%g(x) + 6° for some o, B > 0 and g : R* — R such that

MPg(x) < eg(z) +c,
for some € € (0,1) and ¢ > 0 (both may depend on §). Then condition (3) is satisfied with

D(r.8) = 5°g(x) +

+ 67,

—€
PAF Lemma 23145 PAHEST weak error analysis: condition (2) 5<%

Lemma 1.7. Let x,y; be two Feller process with Markov semigroup P, and @, respectively.
Denoting by L and L9 the corresponding infinitesimal generator, the following identity holds,

PIw) - Q) = | BT — 2P f(y)ds,

for every f € C3(R"), x € R" and t > 0.

Proof. Followed by It6 formula, we can write

E*[o(t, y:)] =¢(0,yo)+/0 E” [0505(ys) + L %s(ys)] ds,



for every ¢(t,-) € CZ(R"). Fix t > 0 and choose ¢, = P,_,f with f € CZ(R") (FF% Question 1 f
Z518), for every s € [0, t], we obtain

Quf(2) = B [f ()] = Puf(z) + / EF [0, P/ (ys) + -Z9Pr.f(y,)] ds

— Pf(x) + / B [~ 2P P f () + Z9Pr o f(y)] ds,

where the equality follows by the definition of #7%,

0P f () = ;lLlE% P(sh)f(if_)h— P_sf(x)

= — lim Ph(‘Pt—Sf)(‘r) B -Pt—sf(x)
h—0 h

= - 2"P_.f(2).
This gives the statement. O
To be clear, let {Y,’} be the explicit Euler scheme of the SDE
dX; = b(Xy)dt + o(Xy)dWs,  Xo ==z, (8)

ie.,
VP =Y +b(Y2)5+o(Y))AW,,, Yy ==, (9)
where t, = né and AW, =W, ., —W,,.

The idea of analyzing the weak error between X; and Y; comes from Lemma 1.7. It is well-
known that the generator of X; can be written down explicitly via It6 formula. As for the numerical
process Y; , we apply the following interpolation technique.

Let Y} defined by

Ay = b(Y?

2 At (Y ), (10)

with t,q) =t; for t € [t;,t;11). Apply It6 formula on each interval and then summing up, we shall
obtain the following Itd-formed formula, see [3, Lemma 3.5]

/ V(s Y7) (Y )dW,.

Here V is gradient w.r.t. the spatial variables and

n

(L)1) defzbz )0i f (x Z( () (v) )05 f ().

2] 1
Note that .2 f(z) = L) f(x). Therefore by Lemma 1.7, we can write

B[/ (X0)] — Bl (V)] = E° [ / (z(m - %, )) (PP (Y2)ds (11)

tn(s)

for f € CZ(R™),t > 0. We shall choose t = ¢ in the proof of the below theorem to obtain the local
consistency (2).



Theorem 1.8. Under global Lipschitz assumption for b, o with Lipschitz constant c1, ¢y respectively
together with the boundedness of o by M, conditions (2) is satisfied by the explicit Euler scheme
Y2 with ¢(x,8) = |x| 62 + 6%/,
If in addition, there exists constants by, by > 0 such that
(b(x), z) < —bo|x]* + by,

then by Lemma 1.6, (3) is satisfied.
_If in addition, the SES condition (1) is satisfied as well, then by Theorem 1.5, there exists
K > 0 such that

sup [E°[f(X,)] = E°[f(Y)]| < K || fll ez - (6 ]| +6Y/?)

>0

for any f € CZ(R") and & > 0 small enough. That is, the explicit Euler scheme (9) is a UiT
approzimation of the corresponding SDE (8).

Proof. Choose t = ¢ in (11), then

5
B - B =B | [ (Zs) o) (Proeh YD)
By the definition of the operator .Z,), we have
E7[f(X5)] = B [f(Y,)]

g
—E" { /0 (b(Y?) = b(x), VP f(Y))

2 S 00T — o)) ) Py wF (V)3

ij=1

Due to the global Lipschitz assumptions of b, 0 and the boundedness of o, we have

E*[f(Xs)] = Eo[f(Y?)]
d
<CE’ UO (VP f(XD| + V2 Ps—s f(XD)]) | X7 — 2] ds} :

If the answer to Question 1 is positive, then || P.f chg < K| fll ¢z for some constant K. Moreover,
by construction of the scheme, the local strong error is bounded by

E””HX;S —z|] < |b(z)|s+ ME|W,| < C (Jz| s + s'/?),

where we used |b(z)| < C(|z| + 1) deduced by the global Lipschitz of b and Hoélder’s inequality.
After completing the integration condition, (2) follows.

The remaining part of the proof is straightforward. Term 1 — e’ disappear here because we
do not care about the coefficient K in this theorem so that we can replace it with its equivalence

small value(ZE 4} J555/)N), which is 4, as § is small enough. O
Remark 1.9. [1, Section 2.1] also gives sufficient coefficient-criteria for the SES condition. However,
the criteria only works for b(z) = —x — z® ([1, Example 2.5]) but not for b(z) = z — 2% (easily
checked).

1.3 UiT Weak Convergence for Implicit Euler Scheme with One-sided
Lipschitz Coefficient: Modification of SDE
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