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Notations

Some uncommon notations are introduced here.

o L(X,Y) denotes the space of bounded linear operator from X to Y. If X =Y, then simply
denoted by L(X).

o By(H) denotes the space of bounded measurable functions from H to R.



o Denote £?(a,b) (resp. £(a, b)) the space of all stochastic processes
flt,w):[a, b x Q2 —R
where a <t < b,w € €, satisfying the following:
(i) (t,w)— f(t,w) is B x F-measurable, where A denotes the Borel o-algebra on [a, b];

(ii) f(t,w) is non-anticipating w.r.t. F;

(iii) fab f(t,w)?dt < oo (resp. fab |f(t,w)|dt < 00) a.s.
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In §1.1, we breifly introduce the meaning and equivalent characterizations of ergodicity. In
§1.2, we investigate in details on the structure of the set of invariant measures. One of the key
results is that the unique existence of invariant measure implies ergodicity. §1.3 provides some
sufficient conditions for the Markov semigroups that process invariant measures and §1.4 for which
of processing a unique invariant measure.

1.1 Ergodicity

Ergodic measure is a special member in the family of invariant measures. In this subsection, we
shall give definitions for both of them.

1.1.1 Invariant Measure of Markov Semigroup

Assume that H be a Hilbert space and T = R, or N.

Definition 1.1. Let (H, Z") be a measurable space. A probability measure p on it is said to be
invariant w.r.t. a semigroup P, € L(B,(H)), t € T iff

Pody = d
/ odp /gb L (1)
forall t € T and ¢ € B,(H).

Remark 1.2. Tt is clear that the above definition is equivalent of saying

pbi(A) = p(A) (2)

for all t € T by the classic method; or
Pru=p (3)
for all t € T by Remark A.13.



1.1.2 Ergodic Theorems

A basic fact for invariant measure w.r.t. a semigroup P, is that we can extend P, from an element
in L(B,(H)) to a strongly continuous (for each ¢ € L*(H,p), lim;_ o P¢ = ¢) semigroup of
L(L*(H,pn)), [3, p- 381, Theorem 1]. Then P, could be view as a linear operator on a Hilbert
space, so that we can use the following result in the operator theory on Hilbert space.

Theorem 1.3. Let E be a Hilbert space and T be a bounded linear operator on E. Let
1 n—1
M, Z =5
"=
on E. Assume that sup, .y ||T"]] < oco. Then lim,, M, (z) exists for all v € E, denoted the limiting

value by My, (x). Moreover, My, € L(E), M2 = M., and M, (E) = ker(I — T).

For a proof, see [3, Theorem 5.11].
Then apply the result to the average

1 [T
My L [ P
T Jo
for all ¢ € L*(H,u) and T > 0. We obtain the well-knwon Von Neumann’s ergodic theorem , [3,
Theorem 5.12].

Theorem 1.4 (Von Neumann). limg_,., M(T)¢ exists in L*(H, ), denoted by My¢. Moreover,
it is a projection operator on ¥ and also

/H Moopdy = /H od .

1.1.3 Characterizations of Ergodic Measures

Thanks to Von Neumann’s Theorem, the following definition makes sense.
Definition 1.5 (ergodic, strongly mixing). Let p be an invariant measure for P,. We say that
o is ergodic iff o )

in L?(H, p)-sense for all ¢ € L*(H, u),

e is strongly mizing iff

lim P¢ = ¢
in L?(H, p)-sense for all ¢ € L*(H, i),
where ¢ = p(¢) (the expected value of ¢).

Remark 1.6. (i) Ergodicity is often interpreted by saying that the “time average” converges to
the “space” average as T goes to infinity. If p is strongly mixing, then it is erogdic by L’
Hospital’s theorem.



(ii) The main problems we focused in this thesis would be the existence and uniqueness of
invariant measure for a given system. Therefore we define ergodicity for measures. However,
for the problems that considering a fixed measure space and discuss the systems, one may
say the ergodicity for semigroups or operators.

Ergodicity can also be characterized as the following. In fact, this is a standard result in ergodic
theory. The discussion can be found in [1, Subsection 12.4.3].
Let X of be the sets of stationary points

def
S={o e L*(H,p): Pp =0} (4)
Definition 1.7. Let u be an invariant measure of P;. A measurable set A is said to be invariant
for P, iff its characteristic function 1,4 belongs the stationary points X. If u(A) equals 0 or 1, we
say it is trivial.

Theorem 1.8. Let p be an invariant measure for P,. Then following statements are equivalent:
(i) w is ergodic.
(ii) The dimension of the linear space Y of stationary points in (4) is 1.

(iii) Any invariant set is trivial.

1.2 Structure of the Set of Invariant Measures
Let ot
A={neBy(H)" : Fip=p}. (5)
Then it is clear a convex susbet of B,(H)*.
Theorem 1.9. Assume that there is a unique invarinat measure p for P,. Then u is ergodic.

Proof. Assume by contradiction that p is not ergodic. Then u process a nontrivial invariant set
F, i.e. Pt]lr = ]lr. Let

1
pr(A) = ——pu(ANT (6)
(4) = —n(ANT)
for all A € Z(H). It is a probability measure and we are going to show it is another invariant
measure, i.e.,

i (A) = /H Py(, A)pur (de);

or equivalent (by classic method)

W(ANT) = / Py, A)pu(dz).

Since I' is an invariant set,

/F Py(z, Ayu(dz) = / Py(z, AN Tu(dz) + / Py(z, AN T9)u(dz)

r

P(z, ANT)u(dx)

Pt(a:,AﬁF)u(dx)+/ Pz, AN T)p(da)

c

Il
———

Pz, ANT)pu(dz) = n(ANT),



by the invariance of y in the last step. [

Now we would like to prove the set of extreme points of A is precisely the set of ergodic
measures. We need the following lemma.

Lemma 1.10. Let p,v € A with p ergodic and v absolutely continuous w.r.t. p. Then p = v.

Proof. By the definition of ergodicity,

T—o00

A
lim —/ P 1rdt = u(T)
T Jo

in L?(p). Therefore there exists a sequence T}, T 0o such that

n—oo n

I
lim —/ Prdt = u(T)
0

p-a.s. Since v < p, it holds v-a.s. Then integrate w.r.t. v, the Lh.s. equals v(I') by the invariance
of v; the r.h.s. maintains the same since v is a probability measure. Hence u(I') = v(T"). O

Definition 1.11 (extreme points). Let C' be a convex set. x € C' is said to be an extreme point
iff the existence of @ € (0,1) such that x = ay + (1 — )z for y,z € C implies z =y = z.

Theorem 1.12. The set of all invariant ergodic measures of P, coincides with the set of all extreme
points of A.

Proof. 1. Assume p is ergodic. If there exists o € (0,1) such that p = auy + (1 — a)us then
clearly py < p, pio < . Hence py = po = p.

2. Assume p is a extreme point. Let I' be an invariant set. Define ur as (6). We know that pur
is an invariant measure. Then one can easily check the following

po=p()pr + (1= p(T))pre.

Therefore p(I") must equal to zero or one, which shows the ergodicity.

]
Theorem 1.13. If u and v are both ergodic, then p = v or u L v (u and v are mutually singular).

Proof. Assume pu # v. Let I' € B(H) such that pu(T") # p(I"). Then by the definition of ergodicity,
there exists T, T oo and M, N Borel sets such that u(M) = pu(N) =1 and

1 [T
lim —/ Par(2)dt = (D),
0

n—oo n

for all x € M; and
I
lim —/ Plr(x)dt = v(T),
0

n—oo n

for all x € N. We can take the common sequence 7T,, by replacing it with subsequence if necessary.
Then we must have M NN = (), i.e. p and v are mutually singular. 0



1.3 Existence of Invariant Measure

In this subsection, we shall prove the famous Krylov-Bogoliubov Theorem and its consequences,
which are important tools to show the existence of invariant measures.

Definition 1.14 (Feller). Let P, be a Markov semigroup on H. We say P, is Feller iff P,¢ € Cy,(H)
for any ¢ € Cy(H) and any t > 0.

Lemma 1.15. Let p,v € My (H) be such that

| st = [ ot

for all ¢ € Cy(H). Then p=v.
Proof. Note that ¢,, € B,(H) defined by

1, ifeeC
Pn(z) =1 —nd(x,C) ifd(z,C)<1/n
0 if d(z,C)>1/n

is uniformly bounded by 1 and converges to 1o when C'is closed. Then the dominated convergence
theorem implies u(C') = v(C). As the collection of closed sets generates the Borel o-algebra of H,
i = v as claimed. O

Theorem 1.16 (Krylov-Bogoliubov). If P, is Feller and for some x, the sequence of measures

1 T 1 T
(o, G) = T/o Pl () dt = T/o Py(xo, G)dt

is tight, then there exists an invariant measure p for P, on H.

Proof. By the well-known Prokhorov theorem, tightness implies weak compactness. There exists
{11, }ren weakly converge to p. That is, for ¢ € Cy(H),

im [ wdun, = [ wdn
E Ju H

From the definition of ur,

/ﬂGdMT = pr(G) = %/OT [/ ﬂc(y)Pt(xoady)] dt.

Jour =1 [ [ ot ) a

for all ¢ € Cy(H). Using this,

Therefore

k

1 T 1 (T
R /0 [ / Z/J(ZJ)Pt(xoady)] dt = lim /0 Paj(ao)t



For any ¢ € Cy(H), choose ¢ = P,¢ € Cy(H) by Feller property, then

I
/ P,¢dp = lim —/ Py so(xo)dt

Ty Tr+s s
= 1i£ﬂTik [/0 Pyp(wo)dt + /Tk Prg(zo)dt —/0 Ptéb(Io)dt}
= lim /H ¢dpr, = / odp.

By Lemma 1.15, p is an invariant measure for P;. U

1.4 Uniqueness of Invariant Measure

The following definitions is crucial for the existence and uniqueness of the invariant measure, as
we shall see later.

Definition 1.17 (strong Feller, irreducible, regular). Let P, be a Markov semigroup on H.
o P, is strong Feller iff P,y € Cy(H) for any ¢ € B,(H) and any ¢ > 0.
o P, is drreducible iff P,1p(y, () > 0 for all 2,29 € H, r > 0 and any ¢ > 0.

o P, is regular iff for fixed ¢ > 0, all probability measures {m(x,-): * € H} are mutually
equivalent (two measures are equivalent iff 4 < v and v < p, i.e. A, = A, where 4,
denotes the collection of sets of measure zero by f.).

Theorem 1.18 (Hasminskii). Assume that the Markov semigroup P is strong Feller and irre-
ducible. then it is reqular.

Proof. To prove the regularity, it suffice to show that P,(x, A) > 0 implies P;(y, A) > 0 for all
x,y € H. Now assume P;(x, A) > 0. Pick h € (0,¢). We have

Pt(:c,A):/HPh(x,dz)Bh(z,A)

so that P,_j(z9,A) > 0. By strong Feller, there exists B(zp, ) such that P,_,(z, A) > 0 for all
z € B(z,r). Hence

Py, A) = / Pa(y,d2)Prn(z, A)
H
> / Pu(y,d2)Prp(z, A) > 0
B(zo,r)

by irreducibility. O

Theorem 1.19 (Doob). Assume that the Markov semigroup P, is reqular and processes an invariant
measure . Then p is equivalent to Py(x,-) for any t > 0 and x € H. Moreover, u is the unique
ergodic measure for P;.



Proof. Note that
u(4) = [ Py Ay
H

Therefore the equivalence of p and P,(x,-) follows immediately by the definition of regularity.
Let I' be the invariant set, with p(I') > 0, Plr = 1p. Since p(I') > 0, we must have
Plr(xz) = Py(z,T") > 0, for all x € R™ by equivalence. Then we obtain 1p(z) > 0 for all z € R™ so
that 1 = 1. Hence u is ergodic.
If there is another invariant ergodic measure v. Then p must equivalent to v so that u = v by
Lemma 1.10. 0

Remark 1.20. Under the conditions of Doob’s Theorem, the conclusion of p can be stronger than
ergodicity. In fact, u is strongly mixing. The proof [2, Theorem 4.2.1] is not that easy so that we
only quote the result.

2 SDE kI Markov PEFISFIE

We are here concerned with the study of the asymptotic behaviour of the Stochastic Ordinary
Differential Equation (SDE)

(7)

dX(t) = b(X(t))dt + o(X(¢))dW (t)
X(s) =,

where b: R? — R o : RY — R and X (t), W (t) € RY, n € L*(Q,.ZF,).
R X LFRE drift b F1 diffusion o #FB-SWAIIG K. SDE (7) IEUEMZ Markov PEFIFE I
—fE BN, B R FEE SDE BRI AH KPR
Definition 2.1. An R%valued stochastic process {X;, s <t < T} is called a solution of (7) if it
has the following properties:
(i) {X:} is continuous and F-adapted.
(i) b(Xy) € ZLY(s,T) and o(X;) € ZL%(s,T).

(iii) The following stochastic integral equation

X, =20 + / tb(Xu)du+ / ta(Xu)qu 8)

holds a.s. for ¢ € [s,T].

A solution {X;} is said to be unique if any other solution {X,} is indistinguishable from {X,},
that is, 5
P{Xt = Xt,Vt € [S,T]} =1.

Notation 2.2. We shall use X (¢, s, z,w) (or X;”*(w) when there are to many parentheses) to denote
the solution of SDE (7), where s,z means the SDE is initialized at s with value z and ¢ means at
time t. If s = 0, then we simply write X (¢,z,w) (or XJ(w)) instead of X (¢,0,z,w). Sometimes
when there is no chance of ambiguity, we would only write X;(w). We often omit to write w as the
convention in probability theory.



The advantage of the notation X (¢, s, x,w) is that, when the initial value possesses randomness,
i.e. = z(w) is a random variable, then there will be two different contributions to the randomness
of X(t,s,z(w),w). Using our notation, those two kinds of randomnesses are seperated clearly in
mind.

In the following, we shall use 7, ( to denote a random initial value and z, y to denote a constant.

In this subsection, we wish to prove that

Pg(x) = E[p(XP)]

satisfies the semigroup property: P; o Pi(¢) = Psyi(0).
Define ot
Pyyp(x) = E[p(X77)].

Then Pt = PO,t-
The following property is an immediate consequence of uniqueness.

Lemma 2.3. Let ¢ € L*(Q, #,). Then
X(t,s,¢) = X(t,r,X(r,s,())
holds for 0 < s <r <t<T.

Proof. Since X (t,s, () is the solution,

X(t,s,0) :§+/tb(Xj’C)dqu/ta(Xj’C)qu

T t T t
ZC—i—/ +/ b(Xj’C)du+/ +/ o (X9 dw,
t

=X(r,5,() + / b(X5)du + / ta(vaé“)qu.

From the uniqueness, X (t,s,() = X (t,7, X(r, s,()). ]
A useful relationship between X (¢,s,7n) and X (¢, s, z) is given below, where n € L*(2,.%,) and
r € R

Assumption 2.4. Assume that
n= Z Trlay,
k=1

where z1,...,7, € R and Ay,..., A, are mutually disjoint sets in .%, such that Q = Uy Ak
Then

X(t,s,m) = ZX(t, s,xp)la,.
k=1

XM AT T global Lipschitz Z24kf) SDE FIEAJE AT Lipschitz 2448 SDE ¥ /& . For a
proof, see , [1, Proposition 8.6], HAUERHv] DA#E 2| BB B34 Lipschitz 281 SDE.

We have the following preparation lemma for the proof of Markov property.



Lemma 2.5. For all ¢ € By(R?) and all n € L*(Q, .Z,), we have

Blp(X(t,5,n)) | Fs] = Peud(n)

for 0 < s <t <T. Consequently,

E[¢(X(ta S, 77))] = E[Ps,t¢(n)]'

Proof. [1]. Since the class of simple functions is dense in L*(€),.%,), Cy(R?) is dense in B,(RY), it
is enough to take n of the form
n = Z Tila,
k=1

where z1,...,2, € R?and Ay,..., A, are mutually disjoint sets in .Z, such that Q = |J, Ax. Once
we have shown this, then we can find simple functions 7, — n for all w satisfying

E[‘b(X@? S, 77”)) ’ ys] = Ps,t(lﬁ(nn)'

Assume ¢ € Cy(R?). As we have shown the continuity of X (¢,s,z) w.r.t. x in L? sense, there
exists a subsequence {ny} such that X (t,s,n,) converges to X(¢,s,n) a.s. Let k — 0o, the result
follows by bounded convergence theorem.

Now consider such case. By Lemma 2.4, we have

X(t,s,m) = ZX(t, s,xx)la,
k=1

for 0 < s <t <T. Consequently,

n

¢(X(t’ S, 77)) = Z ¢(X<t7 S, xk?))ﬂAk

k=1
since their domains are disjoint, which implies

n

E[p(X(t,s,m) | Z] = Y ElS(X(t,s,24))1a, | F].

k=1

Since 1,4, is .#-measurable and ¢(X (¢, s, xy)) is independent of .%,, we have
E[o(X(t, s, 2))1a, | Fs] = Poud(ai)La,
by the property of conditional expectation. In conclusion,
Elp(X(t,5,m)) | F] = Psrd(n). O
Theorem 2.6. Let 0 < s <r <t <T and ¢ € B,(R?). Then we have
Py () = E[P10(X (1, 5,7))].

In other words, Py = Py, P, 1¢.

10



Proof. By Lemma 2.5, we have
E[Pr,t¢<X(r7 S5, x))] - E[¢<X(t7 Ty X(Tv = :L‘)))] = E[¢(X(tv S, :L‘))] = PS,tQS(m)‘
Since E[P,;¢(X (1, s,x))] = Ps,[Pr+¢(x)], the result follows. O

Theorem 2.7 (Markov Property). Let 0 < s <r <t < T and let n € L*(Q, #;). Then for all
¢ € By(R?) we have
E[o(X(,5,n)) | Fr] = Prag(X(r,5,1)).
Proof. Set ¢ = X (r,s,n). Then by Lemma 2.5, using Lemma 2.3,
E[¢(X(t7 8777)) | ﬂr] :E[¢(X<t7 S, X(T’ S, 77))) | ﬁr]
:E[¢(X(t,7’, C)) | yr] - Pt,r¢(<)

and the conclusion follows. O]

The solution is time-homogeneous in the following sense.

Theorem 2.8. The solution X" is time-homogeneous, i.e. {X>%} and {X,"} have the same
distribution. In other words, Pssip = FPop = P.

Proof. [@ksendal, 2003]. On one hand,
s+h s+h
X2, =x —|—/ b(X " )du —|—/ o(X*)dW,

Lletv=u—soru=v+s

h h
ot [um)a s [ o)A,
0 0

Let W, = Wyis — Wy, Check that AW, = AWoyis
h h
=z +/ b(X ) dv + / o(X ) dW,,.
0 0

Here W, is a Brownian motion started at 0 a.s. On the other hand,
h h
X = x—l—/ b(Xg’x)dv—F/ o(X*)dW,,.
0 0

As W, and W, have the same distribution, {X%} and {X,"*} also have the same distribution by

the uniqueness of the solution. Il
Theorem 2.9. P, defines a Markov semigroup (not necessarily strongly continuous).

Proof. We have shown that Py ;4,¢ = Fy sPs s++¢ in Theorem 2.6. By homogenity, Ps 4, = F; and
the conclusion follows. ]

3 SDE KA firry o Dy P

TATDLFE T SDE B E L2 — 1 FFi Markov i3 4%, R RT PAFI FH — e i Dy PR e . ARKEE
Hasminskii £l Doob EH, Ha0EAZR M B LEAETE , semigroup [ strong Feller £ irreducible
P BV R] 5 RF G 1 o

X ESL#, global Lipshitz REUFIEET well-known result, BT REE WAE 9]
WIe T (WP IE X FENE) ; X THUEM, global Lipshitz ZREHIE W] PASH B2-R
M FFN L, JE global Lipschitz B (0@ BFFE AT RS .
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A Markov Kernel and Markov Semigroup

In this section, we shall introduce the idea of transition in both the language of kernel and semi-
group, which is not included in some standard textbooks of probability theory. The materials
could be found in [5, Chapter 1]. The beautiful notation makes it easier for us to illustrate the
ideas of in both Markov chain and Markov process.

Since we are in the universe of probability, we only care for Markov kernel. However, it should
be remarked that similar results in this section hold for o-finite kernel [1].

A.1 Markov Kernel and its Corresponding Operator

There are two mathematical languages to describe a probabilistic transport: kernel language and
semigroup language.

Definition A.1 (Markov kernel). Let (X, 2") and (Y, %) be two measurable spaces. A Markov
kernel N on X x % is a mapping N : X x & — [0, 1] satisfying the following conditions:

(i) for every x € X, the mapping N(x,-) : A~ N(x, A) is a probability measure on %/

(ii) for every A € &, the mapping N(-, A) : v — N(x, A) is a measurable function from (X, .2")
to ([0,1],2)".

Remark A.2. We can understand a Markov kernel N(z, A) as the probability of z going to A with
the help of N. For a reason, see Remark 2.4.8 in the original thesis.

Remark A.3 (Probability measure seen as Markov kernel). A probability measure v on a space
(Y, %) can be seen as a Markov kernel on X x ¢ by defining N(z, A) = v(A) for all z € X. In this
case, our previous understanding does not make sense since all the probability of x goes to a fixed
set A equal. We can understand it as the initial measure on (Y,%/); that is, a given probability
measure before transportations happen.

Notation A.4. Let N be a Markov kernel on X x & and f € B,(Y) (the set of all real-valued
bounded functions on Y). A function Fy f : X — R is defined by

Fuf(e) % / Nz, dy) (). (9)

Notice that Fyla(z) = N(x, A), for A€ &
By Remark A.3, we can consequently define F,, similarly,

Fof(z) = / )

for all z € X. Since the function F, f(z) is a constant, we denote it simply by F, f. Note that this
is equivalent to E,(f).

The following lemma ensures the measurablity of N f.
Lemma A.5. Let N be a Markov kernel on X x % . Then
(i) for all f € By(Y), Fvf € By(X);

1% will always denote the Borel o-algebra of the corresponding metric space. In this case, & = %4([0,1]).

12



(it) |[Fi floo < [floc-

Proof. Write down the definition to check that F f is 2 -measurable when f is a simple function.
Then for f € B,(Y), there exists a sequence of functions f, converges pointwise to f by the
approximation theorem. Then by the dominated convergence theorem, Fi f(z) = lim, Fy f,(x)
for all z € X. Therefore Fyf is 2 -measurable as being the pointwise limit of a sequence of
measurable functions. Finally, from

Fuf(a /f N(x, dy) <\f|oo/N:cdy> e

we obtain |Fy fleo < |floo- O

Notation A.6 (Indentify Fy with N). Thanks to the lemma, Fy becomes an bounded linear oper-
ator from B, (Y) to B,(X); in other words, every Markov kernel N(x, A) has a natural embedding
to L(By(Y),By(X)) by N — Fy. Moreover, if the Markov kernel is just a probability measure v,
then F), can be viewed as a linear functional.

With a slight abuse of notation for the convenience of representation, we will use the same
symbol for both the kernel and the operator ? ; that is, we will identify Fy with N. Thus the
notation F would be abandoned.

The following lemma provides a useful tool to verify a construction of operator being a Markov
kernel.

Lemma A.7. Let M : By(Y) — By(X) be an additive (M(f +g) = M f+ Mg) and homogeneous
(M(af) = aMf) operator such that lim, M(f,) = M(lim, f,) for every increasing sequence
{fn,n € N} of functions in By(Y). Furthermore, M(1y) =1. Then

(i) the function defined on X x % by N(x,A) = M(14)(x) forz € X and A € ¥ is a Markov

kernel;

(ii) M(f)= Nf forall f € By(Y).

Proof. 1. Since M is additive for each x € X the function A — N(z, A) is additive. o-additive
then follows by the monotone convergence property. Write down the definition of N(x, A)
being a Markov kernel to finish the proof.

2. To show M(f) = Nf for all f € B,(Y). Consider firstly f being simple functions and then
apply dominated convergence theorem.
O

A.2 Compositions of Kernels, Markov Semigroup

Theorem A.8 (Compositions of kernels). Let (X, 27), (Y, %) and (Z, %) be three measurable
spaces and let M, N be two kernels on X X % and Y x % respectively. Then there exists a kernel
on X x %, called the composition of M and N, denoted by M N, such that for allz € Z',A € &
and f € By(Z),

N(a:,A):/YM(x,dy)N(y,A).

2 Although it sounds unreasonable, we have met such abusion already in Linear Algebra, when we identify matrix
A with the linear map induced by A.
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Furthermore, MN f(x) = M|N f](x). Consequently, the compositions (when there are more than
three kernels) of kernels are associative.

Proof. The kernels M and N define two additive and positively homogeneous operators on B, (Y)
and By(Z). Then it is easy to check that M o N is additive and positively homogeneous, where
o denote the usual composition of operators. The monotone convergence property also holds for
M o N. Therefore by Lemma A.7, there exists a kernel, denoted by M N, such that M o N(f) =
(MN)(f) for all f € By(Z). To conclude the proof, it remains to write down the relationship
between the kernel and its relating operator. O

Remark A.9. (i) As Remark A.2, we can understand M N(z, A) as the probability of x goes A
with the help of N then M.

(ii) From Remark A.3, as a corollary, if v € M;(2") (the set of all probability measures on
(X, Z7)), then there exists a probability measure vN € M; (%) such that
vM(A) = / v(dz)M(x, A). (10)
X

Similarly, vM can be understood as the result measure after transported by M with initial
measure V.

Remark A.10. Given a Markov kernel NV on X x 2", we may define the n-th power of this kernel
as the n-th compositions. Note that the associativity of the compositions yields the Chapman-

Kolmogorov equation:
Nn+k — N"o Nk (11>

or equivalently
Nk, ) = [ N7, dy) N, A) (12)
X
Equation (11) is called a semigroup structure. Formally, we have the follwing definition.

Definition A.11. Let T = N or R;. A Markov semigroup {P;,t € T} on B,(Y) is a mapping
T — L(B,(Y)), t — P, such that

(i) Po=1d,Pys = P, o P, for all t,s € T.

(ii) For any t € T and x € Y, there exists a probability measure m(z,-) € M;(Y) such that

P(z) = / o)z, dy)

for all ¢ € By(H).

(iii)) When T = R, for any ¢ € Cy(H) (the set of continuous and bounded functions on H) (resp.
By(H)) and = € H, the function t — P,¢(z) is continuous (resp. Borel measurable).

It is easy to see mo(x,-) = 0, for all z € Y; and m4(x, A) = [, m(z, dy)ms(y, A).
Very often, (iii) is not required in the definition of Markov semigroup P;. In this case condition
(iii) means that P, is stochastic continuous |3, Definition 5.1].

14



Remark A.12. When T = N, the semigroup can be constructed by only one Markov kernel. It
is immediate, from (9) and (11), that {N* k € N} is a Markov semigroup, provided that N is a
Markov kernel.

However when T = R, the time index is continuous. We are required to have a sequence of
Markov kernels satisfying my,.s(z, A) = [, m(z, dy)ms(y, A). Since we abuse the notation (Notation
A.6), m(x,-) would be written as P;(z,-) for a semigroup induced by a Markov kernel.

Remark A.13. Let X, Y be metric space so that B, (X), B,(Y) would be Banach space [7, Theorem
4.9]. Now in the view point of semigroup, (10) is equivalent to

/Mf v(dz) = v(Mf).

Since M € L(By(Y),By(X)) and v € B,(X)* (here the star means the dual space), there is a adjoint
operator M* € L(B,(X)*,B,(Y)*) such that M*v(f) =v(Mf).

This remark emphasizes that we could obtain similar expression as the composition in kernel
language using only the language of semigroup. We will continue the discussion when the concept
of invariant measure is introduced.

A.3 Tensor Products of Kernels

The compositions of kernels allow us to integrate on the middle steps of “transports” and care
only on final effects the overall transports made, while the tensor product of kernels gives us the
full information at each step.

We must deal with the measurablity °. FE, here means the section {z € Z : (y,z) € E}.

Lemma A.14. Let (Y, %) and (Z, %) be two measurable spaces and N be a Markov kernel on
Y x 2. Suppose 1, f € BL(#¥ @ &) (recall that % ®@ Z means o(¥ x Z)).

(i) E, € Z forallyeY.
(i) N(y, Ey) is % -measurable.
(iii) [, f(y,z)N(y,dz) is & -measurable.
Proof. 1. Define
G Y (EcW ¥ B e}

Then write down the definition to check ¥ is a o-algebra. On the other hand, if A € & B €
Z,then (Ax B),=Bifyc Aand (AxB),=0ify¢ A Thus AxBe€ 4. AsW @ %
is generated by such rectangles, we must have ¥4, = % ® 2.

2. Define

G Y {Ec® % Ny E,)cB,(Y)})

Observe that ¢, is a monotone class and contains the algebra of finite disjoint unions of
measurable rectangles. % = % ® % by the monotone class theorem.

3In [5], the author write (13) without checking the measurablity. We add Lemma A.14 to make it rigorous. This
step is also the key step when proving the classic Fubini’s Theorem.
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3. Note that
[ 129N 09) = [ 15, ()N (. d2) = N )

Therefore if f, is non-negative simple functions, then [, f,(y, 2)N(y, dz) is measurable. The
result then follows by the monotone convergence theorem.
]

Theorem A.15 (Tensor product). Let (X, 2°), (Y, %) and (Z, %) be three measurable spaces and
let M, N be two Markov kernels on X x % and Y x Z respectively. Then there exists a Markov
kernel on X x (% ® &), called the tensor product of M and N, denoted by M & N, such that for
all f €By(Y X Z,% ® %) its corresponding operator satisfies

M@ Nf) = [ Mead) [ )N (d2), (13)

Furthermore, if (U, %) is a measurable space and P is a kernel on Z x % , then (M @ N) @ P =
M ® (N ® P), i.e. the tensor product of kernels is associative.

Proof. As Lemma A.14 shows the integrand is measurable, we can define the mapping I : B (Y x
Z) — By(X) by

IﬁﬁiéM@dwéfWAN@ﬂﬁ

The mapping is additive and homogeneous. The monotone convergence property also holds. The
Markov kernel M ® N thus exists. Since we can explicitly write down the definition of tensor
product, the associativity is also nature. O

Notation A.16. For n > 1, the n-th tensor power P®" of a kernel P on X x 2" is the kernel on
X x 2@ defined by P® --- ® P, i.e.

P f(x)= [ f(x1,...,20)P(x,dzy)P(xy,dxs) - - P(x,_1,dz,). (14)

Remark A.17. Different from compositions of kernels, tensor products M ® N stored all the
probabilistic information of the transport first N then M. For example, M ® N(z, A x B) for
A€ % B e Z means the probability of x goes to A first with N then goes from A to B with M.
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