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欲研究 SDE 及其数值解的遍历性，我们需了解对于 Markov chain 或 process 的一般随机遍
历性理论，再应用到我们关心的特定 Markov chain 或 process 上。在此之前，需要一些 Markov
chain 理论的预备知识，熟悉刻画 Markov chain 的 transition kernel 和对应的 semigroup. 这一
部分也可以参考本笔记的 Appendix A.
另外，Da Prato 所著的 [2, 3, 4] 是重要的参考文献。

Notations
Some uncommon notations are introduced here.

• L(X,Y ) denotes the space of bounded linear operator from X to Y . If X = Y , then simply
denoted by L(X).

• Bb(H) denotes the space of bounded measurable functions from H to R.
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• Denote L 2(a, b) (resp. L 1(a, b)) the space of all stochastic processes

f(t, ω) : [a, b]× Ω → R

where a ≤ t ≤ b, ω ∈ Ω, satisfying the following:

(i) (t, ω) 7→ f(t, ω) is B × F -measurable, where B denotes the Borel σ-algebra on [a, b];
(ii) f(t, ω) is non-anticipating w.r.t. F;
(iii)

∫ b

a
f(t, ω)2dt <∞ (resp.

∫ b

a
|f(t, ω)| dt <∞) a.s.

1 随机遍历性的一般理论
随机遍历性的一般理论旨在给出对于给定 Markov chain 或 process 遍历性的常用充分条件 – 不
变测度的存在唯一性。

In §1.1, we breifly introduce the meaning and equivalent characterizations of ergodicity. In
§1.2, we investigate in details on the structure of the set of invariant measures. One of the key
results is that the unique existence of invariant measure implies ergodicity. §1.3 provides some
sufficient conditions for the Markov semigroups that process invariant measures and §1.4 for which
of processing a unique invariant measure.

1.1 Ergodicity
Ergodic measure is a special member in the family of invariant measures. In this subsection, we
shall give definitions for both of them.

1.1.1 Invariant Measure of Markov Semigroup

Assume that H be a Hilbert space and T = R+ or N.

Definition 1.1. Let (H,X ) be a measurable space. A probability measure µ on it is said to be
invariant w.r.t. a semigroup Pt ∈ L(Bb(H)), t ∈ T iff∫

H

Ptϕdµ =

∫
H

ϕdµ (1)

for all t ∈ T and ϕ ∈ Bb(H).

Remark 1.2. It is clear that the above definition is equivalent of saying

µPt(A) = µ(A) (2)

for all t ∈ T by the classic method; or
P ∗
t µ = µ (3)

for all t ∈ T by Remark A.13.
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1.1.2 Ergodic Theorems

A basic fact for invariant measure w.r.t. a semigroup Pt is that we can extend Pt from an element
in L(Bb(H)) to a strongly continuous (for each ϕ ∈ L2(H,µ), limt→0 Ptϕ = ϕ) semigroup of
L(L2(H,µ)), [8, p. 381, Theorem 1]. Then Pt could be view as a linear operator on a Hilbert
space, so that we can use the following result in the operator theory on Hilbert space.

Theorem 1.3. Let E be a Hilbert space and T be a bounded linear operator on E. Let

Mn
def
=

1

n

n−1∑
k=0

T k

on E. Assume that supn∈N ‖T n‖ <∞. Then limnMn(x) exists for all x ∈ E, denoted the limiting
value by M∞(x). Moreover, M∞ ∈ L(E), M2

∞ =M∞ and M∞(E) = ker(I − T ).

For a proof, see [3, Theorem 5.11].
Then apply the result to the average

M(T )ϕ
def
=

1

T

∫ T

0

Ptϕdt

for all ϕ ∈ L2(H,µ) and T > 0. We obtain the well-knwon Von Neumann’s ergodic theorem , [3,
Theorem 5.12].

Theorem 1.4 (Von Neumann). limT→∞M(T )ϕ exists in L2(H,µ), denoted by M∞ϕ. Moreover,
it is a projection operator on Σ and also∫

H

M∞ϕdµ =

∫
H

ϕdµ.

1.1.3 Characterizations of Ergodic Measures

Thanks to Von Neumann’s Theorem, the following definition makes sense.

Definition 1.5 (ergodic, strongly mixing). Let µ be an invariant measure for Pt. We say that

• µ is ergodic iff

lim
T→∞

1

T

∫ T

0

Ptϕdt = ϕ̄

in L2(H,µ)-sense for all ϕ ∈ L2(H,µ),

• µ is strongly mixing iff
lim
T→∞

Ptϕ = ϕ̄

in L2(H,µ)-sense for all ϕ ∈ L2(H,µ),

where ϕ̄ = µ(ϕ) (the expected value of ϕ).

Remark 1.6. (i) Ergodicity is often interpreted by saying that the “time average” converges to
the “space” average as T goes to infinity. If µ is strongly mixing, then it is erogdic by L’
Hospital’s theorem.
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(ii) The main problems we focused in this thesis would be the existence and uniqueness of
invariant measure for a given system. Therefore we define ergodicity for measures. However,
for the problems that considering a fixed measure space and discuss the systems, one may
say the ergodicity for semigroups or operators.

Ergodicity can also be characterized as the following. In fact, this is a standard result in ergodic
theory. The discussion can be found in [4, Subsection 12.4.3].

Let Σ of be the sets of stationary points

Σ
def
= {ϕ ∈ L2(H,µ) : Ptϕ = ϕ} (4)

Definition 1.7. Let µ be an invariant measure of Pt. A measurable set A is said to be invariant
for Pt iff its characteristic function 1A belongs the stationary points Σ. If µ(A) equals 0 or 1, we
say it is trivial.
Theorem 1.8. Let µ be an invariant measure for Pt. Then following statements are equivalent:

(i) µ is ergodic.

(ii) The dimension of the linear space Σ of stationary points in (4) is 1.

(iii) Any invariant set is trivial.

1.2 Structure of the Set of Invariant Measures
Let

Λ
def
= {µ ∈ Bb(H)∗ : P ∗

t µ = µ}. (5)
Then it is clear a convex susbet of Bb(H)∗.
Theorem 1.9. Assume that there is a unique invarinat measure µ for Pt. Then µ is ergodic.
Proof. Assume by contradiction that µ is not ergodic. Then µ process a nontrivial invariant set
Γ, i.e. Pt1Γ = 1Γ. Let

µΓ(A) =
1

µ(Γ)
µ(A ∩ Γ) (6)

for all A ∈ B(H). It is a probability measure and we are going to show it is another invariant
measure, i.e.,

µΓ(A) =

∫
H

Pt(x,A)µΓ(dx);

or equivalent (by classic method)

µ(A ∩ Γ) =

∫
Γ

Pt(x,A)µ(dx).

Since Γ is an invariant set,∫
Γ

Pt(x,A)µ(dx) =
∫
Γ

Pt(x,A ∩ Γ)µ(dx) +
∫
Γ

Pt(x,A ∩ Γc)µ(dx)

=

∫
Γ

Pt(x,A ∩ Γ)µ(dx)

=

∫
Γ

Pt(x,A ∩ Γ)µ(dx) +
∫
Γc

Pt(x,A ∩ Γ)µ(dx)

=

∫
H

Pt(x,A ∩ Γ)µ(dx) = µ(A ∩ Γ),
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by the invariance of µ in the last step.

Now we would like to prove the set of extreme points of Λ is precisely the set of ergodic
measures. We need the following lemma.

Lemma 1.10. Let µ, ν ∈ Λ with µ ergodic and ν absolutely continuous w.r.t. µ. Then µ = ν.

Proof. By the definition of ergodicity,

lim
T→∞

1

T

∫ T

0

Pt1Γdt = µ(Γ)

in L2(µ). Therefore there exists a sequence Tn ↑ ∞ such that

lim
n→∞

1

Tn

∫ Tn

0

Pt1Γdt = µ(Γ)

µ-a.s. Since ν � µ, it holds ν-a.s. Then integrate w.r.t. ν, the l.h.s. equals ν(Γ) by the invariance
of ν; the r.h.s. maintains the same since ν is a probability measure. Hence µ(Γ) = ν(Γ).

Definition 1.11 (extreme points). Let C be a convex set. x ∈ C is said to be an extreme point
iff the existence of α ∈ (0, 1) such that x = αy + (1− α)z for y, z ∈ C implies x = y = z.

Theorem 1.12. The set of all invariant ergodic measures of Pt coincides with the set of all extreme
points of Λ.

Proof. 1. Assume µ is ergodic. If there exists α ∈ (0, 1) such that µ = αµ1 + (1 − α)µ2 then
clearly µ1 � µ, µ2 � µ. Hence µ1 = µ2 = µ.

2. Assume µ is a extreme point. Let Γ be an invariant set. Define µΓ as (6). We know that µΓ

is an invariant measure. Then one can easily check the following

µ = µ(Γ)µΓ + (1− µ(Γ))µΓc .

Therefore µ(Γ) must equal to zero or one, which shows the ergodicity.

Theorem 1.13. If µ and ν are both ergodic, then µ = ν or µ ⊥ ν (µ and ν are mutually singular).

Proof. Assume µ 6= ν. Let Γ ∈ B(H) such that µ(Γ) 6= µ(Γ). Then by the definition of ergodicity,
there exists Tn ↑ ∞ and M,N Borel sets such that µ(M) = µ(N) = 1 and

lim
n→∞

1

Tn

∫ Tn

0

Pt1Γ(x)dt = µ(Γ),

for all x ∈M ; and

lim
n→∞

1

Tn

∫ Tn

0

Pt1Γ(x)dt = ν(Γ),

for all x ∈ N . We can take the common sequence Tn by replacing it with subsequence if necessary.
Then we must have M ∩N = ∅, i.e. µ and ν are mutually singular.
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1.3 Existence of Invariant Measure
In this subsection, we shall prove the famous Krylov-Bogoliubov Theorem and its consequences,
which are important tools to show the existence of invariant measures.

Definition 1.14 (Feller). Let Pt be a Markov semigroup on H. We say Pt is Feller iff Ptϕ ∈ Cb(H)
for any ϕ ∈ Cb(H) and any t ≥ 0.

Lemma 1.15. Let µ, ν ∈ M1(H) be such that∫
H

ϕ(x)µ(dx) =
∫
H

ϕ(x)ν(dx)

for all ϕ ∈ Cb(H). Then µ = ν.

Proof. Note that ϕn ∈ Bb(H) defined by

ϕn(x) =


1, if x ∈ C

1− nd(x,C) if d(x,C) ≤ 1/n

0 if d(x,C) ≥ 1/n

is uniformly bounded by 1 and converges to 1C when C is closed. Then the dominated convergence
theorem implies µ(C) = ν(C). As the collection of closed sets generates the Borel σ-algebra of H,
µ = ν as claimed.

Theorem 1.16 (Krylov-Bogoliubov). If Pt is Feller and for some x0, the sequence of measures

µT (x0, G) =
1

T

∫ T

0

Pt1G(x0)dt =
1

T

∫ T

0

Pt(x0, G)dt

is tight, then there exists an invariant measure µ for Pt on H.

Proof. By the well-known Prokhorov theorem, tightness implies weak compactness. There exists
{µTk

}k∈N weakly converge to µ. That is, for ψ ∈ Cb(H),

lim
k

∫
H

ψdµTk
=

∫
H

ψdµ.

From the definition of µT ,∫
1GdµT = µT (G) =

1

T

∫ T

0

[∫
1G(y)Pt(x0, dy)

]
dt.

Therefore ∫
ψdµT =

1

T

∫ T

0

[∫
ψ(y)Pt(x0, dy)

]
dt

for all ψ ∈ Cb(H). Using this,

lim
k

∫
H

ψdµTk
= lim

k

1

Tk

∫ T

0

[∫
ψ(y)Pt(x0, dy)

]
dt = lim

k

1

Tk

∫ T

0

Ptψ(x0)dt.
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For any ϕ ∈ Cb(H), choose ψ = Psϕ ∈ Cb(H) by Feller property, then∫
H

Psϕdµ = lim
k

1

Tk

∫ Tk

0

Pt+sϕ(x0)dt

= lim
k

1

Tk

[∫ Tk

0

Ptϕ(x0)dt+
∫ Tk+s

Tk

Ptϕ(x0)dt−
∫ s

0

Ptϕ(x0)dt
]

= lim
k

∫
H

ϕdµTk
=

∫
ϕdµ.

By Lemma 1.15, µ is an invariant measure for Pt.

1.4 Uniqueness of Invariant Measure
The following definitions is crucial for the existence and uniqueness of the invariant measure, as
we shall see later.

Definition 1.17 (strong Feller, irreducible, regular). Let Pt be a Markov semigroup on H.

• Pt is strong Feller iff Ptϕ ∈ Cb(H) for any ϕ ∈ Bb(H) and any t > 0.

• Pt is irreducible iff Pt1B(x0,r)(x) > 0 for all x, x0 ∈ H, r > 0 and any t > 0.

• Pt is regular iff for fixed t > 0, all probability measures {πt(x, ·): x ∈ H} are mutually
equivalent (two measures are equivalent iff µ � ν and ν � µ, i.e. Nµ = Nν , where Nµ

denotes the collection of sets of measure zero by µ.).

Theorem 1.18 (Hasminskii). Assume that the Markov semigroup Pt is strong Feller and irre-
ducible. then it is regular.

Proof. To prove the regularity, it suffice to show that Pt(x,A) > 0 implies Pt(y, A) > 0 for all
x, y ∈ H. Now assume Pt(x,A) > 0. Pick h ∈ (0, t). We have

Pt(x,A) =

∫
H

Ph(x, dz)Pt−h(z, A)

so that Pt−h(z0, A) > 0. By strong Feller, there exists B(z0, r) such that Pt−h(z, A) > 0 for all
z ∈ B(z0, r). Hence

Pt(y, A) =

∫
H

Ph(y, dz)Pt−h(z, A)

≥
∫
B(z0,r)

Ph(y, dz)Pt−h(z, A) > 0

by irreducibility.

Theorem 1.19 (Doob). Assume that the Markov semigroup Pt is regular and processes an invariant
measure µ. Then µ is equivalent to Pt(x, ·) for any t > 0 and x ∈ H. Moreover, µ is the unique
ergodic measure for Pt.
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Proof. Note that
µ(A) =

∫
H

Pt(y, A)µ(dy).

Therefore the equivalence of µ and Pt(x, ·) follows immediately by the definition of regularity.
Let Γ be the invariant set, with µ(Γ) > 0, Pt1Γ = 1Γ. Since µ(Γ) > 0, we must have

Pt1Γ(x) = Pt(x,Γ) > 0, for all x ∈ Rn by equivalence. Then we obtain 1Γ(x) > 0 for all x ∈ Rn so
that 1Γ = 1. Hence µ is ergodic.

If there is another invariant ergodic measure ν. Then µ must equivalent to ν so that µ = ν by
Lemma 1.10.

Remark 1.20. Under the conditions of Doob’s Theorem, the conclusion of µ can be stronger than
ergodicity. In fact, µ is strongly mixing. The proof [2, Theorem 4.2.1] is not that easy so that we
only quote the result.

2 SDE 及其数值解的 Markov 性和齐时性
We are here concerned with the study of the asymptotic behaviour of the Stochastic Ordinary
Differential Equation (SDE) {

dX(t) = b(X(t))dt+ σ(X(t))dW (t)

X(s) = η,
(7)

where b : Rd → Rd, σ : Rd → Rd×d and X(t),W (t) ∈ Rd, η ∈ L2(Ω,Fs).
注意这里需要 drift b 和 diffusion σ 都与时间无关。SDE (7) 的数值解之 Markov 性和齐时性

一般是显然的，因此只需讨论 SDE 真实解的相关性质。

Definition 2.1. An Rd-valued stochastic process {Xt, s ≤ t ≤ T} is called a solution of (7) if it
has the following properties:

(i) {Xt} is continuous and Ft-adapted.

(ii) b(Xt) ∈ L 1(s, T ) and σ(Xt) ∈ L 2(s, T ).

(iii) The following stochastic integral equation

Xt = x0 +

∫ t

s

b(Xu)du+
∫ t

s

σ(Xu)dWu (8)

holds a.s. for t ∈ [s, T ].

A solution {Xt} is said to be unique if any other solution {X̃t} is indistinguishable from {Xt},
that is,

P{Xt = X̃t, ∀t ∈ [s, T ]} = 1.

Notation 2.2. We shall use X(t, s, x, ω) (or Xs,x
t (ω) when there are to many parentheses) to denote

the solution of SDE (7), where s, x means the SDE is initialized at s with value x and t means at
time t. If s = 0, then we simply write X(t, x, ω) (or Xx

t (ω)) instead of X(t, 0, x, ω). Sometimes
when there is no chance of ambiguity, we would only write Xt(ω). We often omit to write ω as the
convention in probability theory.
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The advantage of the notation X(t, s, x, ω) is that, when the initial value possesses randomness,
i.e. x = x(ω) is a random variable, then there will be two different contributions to the randomness
of X(t, s, x(ω), ω). Using our notation, those two kinds of randomnesses are seperated clearly in
mind.

In the following, we shall use η, ζ to denote a random initial value and x, y to denote a constant.
In this subsection, we wish to prove that

Ptϕ(x)
def
= E[ϕ(Xx

t )]

satisfies the semigroup property: Ps ◦ Pt(ϕ) = Ps+t(ϕ).
Define

Ps,tϕ(x)
def
= E[ϕ(Xs,x

t )].

Then Pt = P0,t.
The following property is an immediate consequence of uniqueness.

Lemma 2.3. Let ζ ∈ L2(Ω,Fs). Then

X(t, s, ζ) = X(t, r,X(r, s, ζ))

holds for 0 ≤ s ≤ r ≤ t ≤ T .

Proof. Since X(t, s, ζ) is the solution,

X(t, s, ζ) =ζ +

∫ t

s

b(Xs,ζ
u )du+

∫ t

s

σ(Xs,ζ
u )dWu

=ζ +

∫ r

s

+

∫ t

r

b(Xs,ζ
u )du+

∫ r

s

+

∫ t

r

σ(Xs,ζ
u )dWu

=X(r, s, ζ) +

∫ t

r

b(Xs,ζ
u )du+

∫ t

r

σ(Xs,ζ
u )dWu.

From the uniqueness, X(t, s, ζ) = X(t, r,X(r, s, ζ)).

A useful relationship between X(t, s, η) and X(t, s, x) is given below, where η ∈ L2(Ω,Fs) and
x ∈ Rd.

Assumption 2.4. Assume that

η =
n∑

k=1

xk1Ak
,

where x1, . . . , xn ∈ Rd and A1, . . . , An are mutually disjoint sets in Fs such that Ω =
∪

k Ak.
Then

X(t, s, η) =
n∑

k=1

X(t, s, xk)1Ak
.

这个假设对于 global Lipschitz 系数的 SDE 和单调单边 Lipschitz 系数的 SDE 均满足。For a
proof, see , [4, Proposition 8.6], 其证明可以推广到单调单边 Lipschitz 系数的 SDE.

We have the following preparation lemma for the proof of Markov property.
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Lemma 2.5. For all ϕ ∈ Bb(Rd) and all η ∈ L2(Ω,Fs), we have

E[ϕ(X(t, s, η)) | Fs] = Ps,tϕ(η)

for 0 ≤ s < t ≤ T . Consequently,

E[ϕ(X(t, s, η))] = E[Ps,tϕ(η)].

Proof. [4]. Since the class of simple functions is dense in L2(Ω,Fs), Cb(Rd) is dense in Bb(Rd), it
is enough to take η of the form

η =
n∑

k=1

xk1Ak

where x1, . . . , xn ∈ Rd and A1, . . . , An are mutually disjoint sets in Fs such that Ω =
∪

k Ak. Once
we have shown this, then we can find simple functions ηn → η for all ω satisfying

E[ϕ(X(t, s, ηn)) | Fs] = Ps,tϕ(ηn).

Assume ϕ ∈ Cb(Rd). As we have shown the continuity of X(t, s, x) w.r.t. x in L2 sense, there
exists a subsequence {nk} such that X(t, s, ηn) converges to X(t, s, η) a.s. Let k → ∞, the result
follows by bounded convergence theorem.

Now consider such case. By Lemma 2.4, we have

X(t, s, η) =
n∑

k=1

X(t, s, xk)1Ak

for 0 ≤ s ≤ t ≤ T . Consequently,

ϕ(X(t, s, η)) =
n∑

k=1

ϕ(X(t, s, xk))1Ak

since their domains are disjoint, which implies

E[ϕ(X(t, s, η)) | Fs] =
n∑

k=1

E[ϕ(X(t, s, xk))1Ak
| Fs].

Since 1Ak
is F -measurable and ϕ(X(t, s, xk)) is independent of Fs, we have

E[ϕ(X(t, s, xk))1Ak
| Fs] = Ps,tϕ(xk)1Ak

by the property of conditional expectation. In conclusion,

E[ϕ(X(t, s, η)) | Fs] = Ps,tϕ(η).

Theorem 2.6. Let 0 ≤ s ≤ r ≤ t ≤ T and ϕ ∈ Bb(Rd). Then we have

Ps,tϕ(x) = E[Pr,tϕ(X(r, s, x))].

In other words, Ps,tϕ = Ps,rPr,tϕ.
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Proof. By Lemma 2.5, we have
E[Pr,tϕ(X(r, s, x))] = E[ϕ(X(t, r,X(r, s, x)))] = E[ϕ(X(t, s, x))] = Ps,tϕ(x).

Since E[Pr,tϕ(X(r, s, x))] = Ps,r[Pr,tϕ(x)], the result follows.
Theorem 2.7 (Markov Property). Let 0 ≤ s < r < t ≤ T and let η ∈ L2(Ω,Fs). Then for all
ϕ ∈ Bb(Rd) we have

E[ϕ(X(t, s, η)) | Fr] = Pr,tϕ(X(r, s, η)).

Proof. Set ζ = X(r, s, η). Then by Lemma 2.5, using Lemma 2.3,
E[ϕ(X(t, s, η)) | Fr] =E[ϕ(X(t, s,X(r, s, η))) | Fr]

=E[ϕ(X(t, r, ζ)) | Fr] = Pt,rϕ(ζ)

and the conclusion follows.

The solution is time-homogeneous in the following sense.
Theorem 2.8. The solution Xs,x

t is time-homogeneous, i.e. {Xs,x
s+h} and {X0,x

h } have the same
distribution. In other words, Ps,s+h = P0,h = Ph.
Proof. [Øksendal, 2003]. On one hand,

Xs,x
s+h =x+

∫ s+h

s

b(Xs,x
u )du+

∫ s+h

s

σ(Xs,x
u )dWu

Let v = u− s or u = v + s

=x+

∫ h

0

b(Xs,x
v+s)dv +

∫ h

0

σ(Xs,x
v+s)dWv+s

Let W̃v = Wv+s −Ws. Check that ∆kW̃v = ∆kWv+s

=x+

∫ h

0

b(Xs,x
v+s)dv +

∫ h

0

σ(Xs,x
v+s)dW̃v.

Here W̃v is a Brownian motion started at 0 a.s. On the other hand,

X0,x
h = x+

∫ h

0

b(X0,x
v )dv +

∫ h

0

σ(Xs,x
v )dWv.

As Wv and W̃v have the same distribution, {Xs,x
s+h} and {X0,x

h } also have the same distribution by
the uniqueness of the solution.
Theorem 2.9. Pt defines a Markov semigroup (not necessarily strongly continuous).
Proof. We have shown that P0,s+tϕ = P0,sPs,s+tϕ in Theorem 2.6. By homogenity, Ps,s+t = Pt and
the conclusion follows.

3 SDE 及其数值解的遍历性
我们已经知道了 SDE的真实解是一个齐时Markov过程，因此可以利用一般的遍历性理论。依靠
Hasminskii和 Doob定理，只需证明不变测度的存在性，semigroup的 strong Feller和 irreducible
性即可说明其遍历性。
对于真实解，global Lipshitz 系数情形属于 well-known result, 单调的单边系数情况在 [9] 中

讨论了（也是我毕业论文的主要内容）；对于数值解，global Lipshitz 系数情形可以参看毛学荣
的系列论文，非 global Lipschitz 的情况是研究的课题。
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A Markov Kernel and Markov Semigroup
In this section, we shall introduce the idea of transition in both the language of kernel and semi-
group, which is not included in some standard textbooks of probability theory. The materials
could be found in [5, Chapter 1]. The beautiful notation makes it easier for us to illustrate the
ideas of in both Markov chain and Markov process.

Since we are in the universe of probability, we only care for Markov kernel. However, it should
be remarked that similar results in this section hold for σ-finite kernel [1].

A.1 Markov Kernel and its Corresponding Operator
There are two mathematical languages to describe a probabilistic transport: kernel language and
semigroup language.

Definition A.1 (Markov kernel). Let (X,X ) and (Y,Y ) be two measurable spaces. A Markov
kernel N on X× Y is a mapping N : X× Y → [0, 1] satisfying the following conditions:

(i) for every x ∈ X, the mapping N(x, ·) : A 7→ N(x,A) is a probability measure on Y ;

(ii) for every A ∈ Y , the mapping N(·, A) : x 7→ N(x,A) is a measurable function from (X,X )
to ([0, 1],B)1.

Remark A.2. We can understand a Markov kernel N(x,A) as the probability of x going to A with
the help of N . For a reason, see Remark 2.4.8 in the original thesis.
Remark A.3 (Probability measure seen as Markov kernel). A probability measure ν on a space
(Y,Y ) can be seen as a Markov kernel on X×Y by defining N(x,A) = ν(A) for all x ∈ X. In this
case, our previous understanding does not make sense since all the probability of x goes to a fixed
set A equal. We can understand it as the initial measure on (Y,Y ); that is, a given probability
measure before transportations happen.
Notation A.4. Let N be a Markov kernel on X × Y and f ∈ Bb(Y) (the set of all real-valued
bounded functions on Y). A function FNf : X → R is defined by

FNf(x)
def
=

∫
Y
N(x, dy)f(y). (9)

Notice that FN1A(x) = N(x,A), for A ∈ Y .
By Remark A.3, we can consequently define Fν similarly,

Fνf(x) ≡
∫
Y
ν(dy)f(y),

for all x ∈ X. Since the function Fνf(x) is a constant, we denote it simply by Fνf . Note that this
is equivalent to Eν(f).

The following lemma ensures the measurablity of Nf .

Lemma A.5. Let N be a Markov kernel on X× Y . Then

(i) for all f ∈ Bb(Y), FNf ∈ Bb(X);
1B will always denote the Borel σ-algebra of the corresponding metric space. In this case, B = B([0, 1]).
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(ii) |FNf |∞ ≤ |f |∞.

Proof. Write down the definition to check that FNf is X -measurable when f is a simple function.
Then for f ∈ Bb(Y), there exists a sequence of functions fn converges pointwise to f by the
approximation theorem. Then by the dominated convergence theorem, FNf(x) = limn FNfn(x)
for all x ∈ X. Therefore FNf is X -measurable as being the pointwise limit of a sequence of
measurable functions. Finally, from

FNf(x) =

∫
Y
f(y)N(x, dy) ≤ |f |∞

∫
Y
N(x, dy) = |f |∞,

we obtain |FNf |∞ ≤ |f |∞.

Notation A.6 (Indentify FN with N). Thanks to the lemma, FN becomes an bounded linear oper-
ator from Bb(Y) to Bb(X); in other words, every Markov kernel N(x,A) has a natural embedding
to L(Bb(Y),Bb(X)) by N 7→ FN . Moreover, if the Markov kernel is just a probability measure ν,
then Fν can be viewed as a linear functional.

With a slight abuse of notation for the convenience of representation, we will use the same
symbol for both the kernel and the operator 2 ; that is, we will identify FN with N . Thus the
notation FN would be abandoned.

The following lemma provides a useful tool to verify a construction of operator being a Markov
kernel.

Lemma A.7. Let M : Bb(Y) → Bb(X) be an additive (M(f + g) = Mf +Mg) and homogeneous
(M(αf) = αMf) operator such that limnM(fn) = M(limn fn) for every increasing sequence
{fn, n ∈ N} of functions in Bb(Y). Furthermore, M(1Y) = 1. Then

(i) the function defined on X × Y by N(x,A) = M(1A)(x) for x ∈ X and A ∈ Y is a Markov
kernel;

(ii) M(f) = Nf for all f ∈ Bb(Y).

Proof. 1. Since M is additive for each x ∈ X, the function A→ N(x,A) is additive. σ-additive
then follows by the monotone convergence property. Write down the definition of N(x,A)
being a Markov kernel to finish the proof.

2. To show M(f) = Nf for all f ∈ Bb(Y). Consider firstly f being simple functions and then
apply dominated convergence theorem.

A.2 Compositions of Kernels, Markov Semigroup
Theorem A.8 (Compositions of kernels). Let (X,X ), (Y,Y ) and (Z,Z ) be three measurable
spaces and let M,N be two kernels on X ×Y and Y×Z respectively. Then there exists a kernel
on X×Z , called the composition of M and N , denoted by MN , such that for all x ∈ X , A ∈ Z
and f ∈ Bb(Z),

MN(x,A) =

∫
Y
M(x, dy)N(y, A).

2Although it sounds unreasonable, we have met such abusion already in Linear Algebra, when we identify matrix
A with the linear map induced by A.
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Furthermore, MNf(x) = M [Nf ](x). Consequently, the compositions (when there are more than
three kernels) of kernels are associative.

Proof. The kernels M and N define two additive and positively homogeneous operators on Bb(Y)
and Bb(Z). Then it is easy to check that M ◦ N is additive and positively homogeneous, where
◦ denote the usual composition of operators. The monotone convergence property also holds for
M ◦N . Therefore by Lemma A.7, there exists a kernel, denoted by MN , such that M ◦N(f) =
(MN)(f) for all f ∈ Bb(Z). To conclude the proof, it remains to write down the relationship
between the kernel and its relating operator.

Remark A.9. (i) As Remark A.2, we can understand MN(x,A) as the probability of x goes A
with the help of N then M .

(ii) From Remark A.3, as a corollary, if ν ∈ M1(X ) (the set of all probability measures on
(X,X )), then there exists a probability measure νN ∈ M1(Z ) such that

νM(A) =

∫
X
ν(dx)M(x,A). (10)

Similarly, νM can be understood as the result measure after transported by M with initial
measure ν.

Remark A.10. Given a Markov kernel N on X× X , we may define the n-th power of this kernel
as the n-th compositions. Note that the associativity of the compositions yields the Chapman-
Kolmogorov equation:

Nn+k = Nn ◦Nk (11)
or equivalently

Nn+k(x,A) =

∫
X
Nn(x, dy)Nk(y, A). (12)

Equation (11) is called a semigroup structure. Formally, we have the follwing definition.

Definition A.11. Let T = N or R+. A Markov semigroup {Pt, t ∈ T} on Bb(Y) is a mapping
T → L(Bb(Y)), t 7→ Pt such that

(i) P0 = Id, Pt+s = Pt ◦ Ps for all t, s ∈ T.

(ii) For any t ∈ T and x ∈ Y, there exists a probability measure πt(x, ·) ∈ M1(Y) such that

Ptϕ(x) =

∫
Y
ϕ(y)πt(x, dy)

for all ϕ ∈ Bb(H).

(iii) When T = R+, for any ϕ ∈ Cb(H) (the set of continuous and bounded functions on H) (resp.
Bb(H)) and x ∈ H, the function t 7→ Ptϕ(x) is continuous (resp. Borel measurable).

It is easy to see π0(x, ·) = δx for all x ∈ Y; and πt+s(x,A) =
∫
E
πt(x, dy)πs(y, A).

Very often, (iii) is not required in the definition of Markov semigroup Pt. In this case condition
(iii) means that Pt is stochastic continuous [3, Definition 5.1].
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Remark A.12. When T = N, the semigroup can be constructed by only one Markov kernel. It
is immediate, from (9) and (11), that {Nk, k ∈ N} is a Markov semigroup, provided that N is a
Markov kernel.

However when T = R+, the time index is continuous. We are required to have a sequence of
Markov kernels satisfying πt+s(x,A) =

∫
E
πt(x, dy)πs(y, A). Since we abuse the notation (Notation

A.6), πt(x, ·) would be written as Pt(x, ·) for a semigroup induced by a Markov kernel.
Remark A.13. Let X,Y be metric space so that Bb(X),Bb(Y) would be Banach space [7, Theorem
4.9]. Now in the view point of semigroup, (10) is equivalent to

νM(f) =

∫
X
Mf(x)ν(dx) = ν(Mf).

Since M ∈ L(Bb(Y),Bb(X)) and ν ∈ Bb(X)∗ (here the star means the dual space), there is a adjoint
operator M∗ ∈ L(Bb(X)∗,Bb(Y)∗) such that M∗ν(f) = ν(Mf).

This remark emphasizes that we could obtain similar expression as the composition in kernel
language using only the language of semigroup. We will continue the discussion when the concept
of invariant measure is introduced.

A.3 Tensor Products of Kernels
The compositions of kernels allow us to integrate on the middle steps of “transports” and care
only on final effects the overall transports made, while the tensor product of kernels gives us the
full information at each step.

We must deal with the measurablity 3. Ey here means the section {z ∈ Z : (y, z) ∈ E}.

Lemma A.14. Let (Y,Y ) and (Z,Z ) be two measurable spaces and N be a Markov kernel on
Y× Z . Suppose 1E, f ∈ B+(Y ⊗ Z ) (recall that Y ⊗ Z means σ(Y × Z )).

(i) Ey ∈ Z for all y ∈ Y.

(ii) N(y, Ey) is Y -measurable.

(iii)
∫
Z f(y, z)N(y, dz) is Y -measurable.

Proof. 1. Define
G1

def
= {E ∈ Y ⊗ Z : Ey ∈ Z }.

Then write down the definition to check G1 is a σ-algebra. On the other hand, if A ∈ Y , B ∈
Z , then (A× B)y = B if y ∈ A and (A× B)y = ∅ if y /∈ A. Thus A× B ∈ G1. As Y ⊗ Z
is generated by such rectangles, we must have G1 = Y ⊗ Z .

2. Define
G2

def
= {E ∈ Y ⊗ Z : N(y, Ey) ∈ B+(Y)}.

Observe that G2 is a monotone class and contains the algebra of finite disjoint unions of
measurable rectangles. G2 = Y ⊗ Z by the monotone class theorem.

3In [5], the author write (13) without checking the measurablity. We add Lemma A.14 to make it rigorous. This
step is also the key step when proving the classic Fubini’s Theorem.
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3. Note that ∫
Z
1E(y, z)N(y, dz) =

∫
Z
1Ey(z)N(y, dz) = N(y, Ey).

Therefore if fn is non-negative simple functions, then
∫
Z fn(y, z)N(y, dz) is measurable. The

result then follows by the monotone convergence theorem.

Theorem A.15 (Tensor product). Let (X,X ), (Y,Y ) and (Z,Z ) be three measurable spaces and
let M,N be two Markov kernels on X × Y and Y × Z respectively. Then there exists a Markov
kernel on X × (Y ⊗Z ), called the tensor product of M and N , denoted by M ⊗N , such that for
all f ∈ Bb(Y × Z,Y ⊗ Z ) its corresponding operator satisfies

M ⊗Nf(x) =

∫
Y
M(x, dy)

∫
Z
f(y, z)N(y, dz). (13)

Furthermore, if (U,U ) is a measurable space and P is a kernel on Z× U , then (M ⊗N)⊗ P =
M ⊗ (N ⊗ P ), i.e. the tensor product of kernels is associative.

Proof. As Lemma A.14 shows the integrand is measurable, we can define the mapping I : Bb(Y×
Z) → Bb(X) by

I(f) =

∫
Y
M(x, dy)

∫
Z
f(y, z)N(y, dz).

The mapping is additive and homogeneous. The monotone convergence property also holds. The
Markov kernel M ⊗ N thus exists. Since we can explicitly write down the definition of tensor
product, the associativity is also nature.

Notation A.16. For n ≥ 1, the n-th tensor power P⊗n of a kernel P on X × X is the kernel on
X× X ⊗n defined by P ⊗ · · · ⊗ P , i.e.

P⊗nf(x) =

∫
Xn

f(x1, . . . , xn)P (x, dx1)P (x1, dx2) · · ·P (xn−1, dxn). (14)

Remark A.17. Different from compositions of kernels, tensor products M ⊗ N stored all the
probabilistic information of the transport first N then M . For example, M ⊗ N(x,A × B) for
A ∈ Y , B ∈ Z means the probability of x goes to A first with N then goes from A to B with M .
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